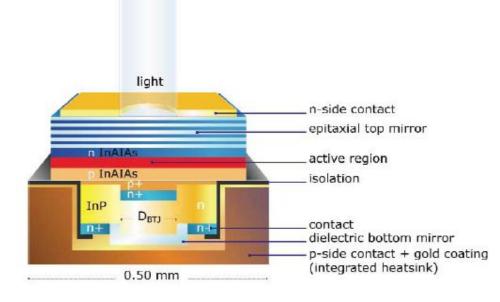
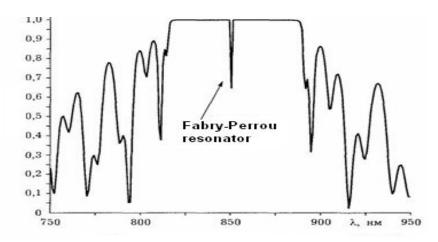
Measurement of formaldehyde concentration in air by 1.78 μ VCSEL

S.M. Chernin, S.L. Malyugin, S.V. Malyugin, A.I. Nadezhdinskii, D.Yu. Namestnikov, Ya.Ya. Ponurovskii, I.P. Popov, Yu.P. Shapovalov, V.Ya. Zaslavskii


A. M. Prokhorov General Physics Institute of RAS 38 Vavilov str., 119991 Moscow, Russia. E-mail: Nad@nsc.gpi.ru

- •Formaldehyde is an reactive intermediate product in troposphere hydrocarbon oxidation initiated by the OH radical. The H₂CO concentration in the atmosphere is in the 1 to 10 ppb range [1–4].
- •Goal of present paper was to investigate possibility to develop instrument to measure trace formaldehyde concentration using near IR range (1.78 μ). Specific feature of the instrument under investigation was absence of H₂CO reference cell to stabilize VCSEL frequency tuning [5].
- •There is only one source of H_2CO spectra in near IR [6] known for authors. Most pronounced formaldehyde absorption features are located are in 5500 – 5700 cm⁻¹ spectral range. Using instrument developed formaldehyde absorption spectra were obtained in range 5578 – 5605 cm⁻¹. Optimal spectral range was determined [see 7] to have no interference with atmosphere water, methane, and CO_2 .
- •Minimum detectable concentration of H_2CO was found to be 1.3 ppb for 10 sec averaging time. Averaging time increasing demonstrated white noise behavior up to 100 sec. However, long averaging times are not acceptable for real applications.


References

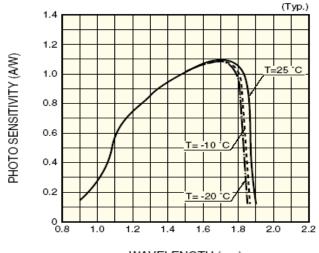
- [1] J.A. Logan, M.J. Prather, S.C. Wofsy, M.B. McElroy: J. Geophys. Res. 86, 7210 (1981)
- [2] X. Zhou, K. Mopper: J. Geophys. Res. 98, 2385 (1993)
- [3] A. Fried, S. McKeen, S. Sewell, J. Harder, B. Henry, P. Goldan, W. Kuster, E. Williams, K. Baumann, R. Shetter, C. Cantrell: J. Geophys. Res. 102, 6283 (1997)
- [4] T.E. Graedel: Chemical Compounds in the Atmosphere, Chapt. 4, (Academic Press, New York 1978), pp. 158-161
- [5] Yu.Kosichkin, A.Kuznetsov, A.Nadezhdinskii, A.Perov, E.Stepanov, Sov.J.Quantum Electronics, 12, 518 (1982);
- [6] http://vpl.ipac.ca ltech.edu/spectra/H₂CO
- [7] L.S. Rothman, et.al., Journal of Quantitative Spectroscopy and Radiative Transfer, vol. 96, pp. 139-204 (2005)

VCSEL structure

Reflection spectrum

- N number of dielectric mirrors layers (25-35)
- Size of active zone ~1µ
- Single pass gain 1%
- R (coefficient of reflection) ≥ 0.995
- Laser light aperture 5 10µ
- Divergency 10-20°
- Mode TEM (oor)

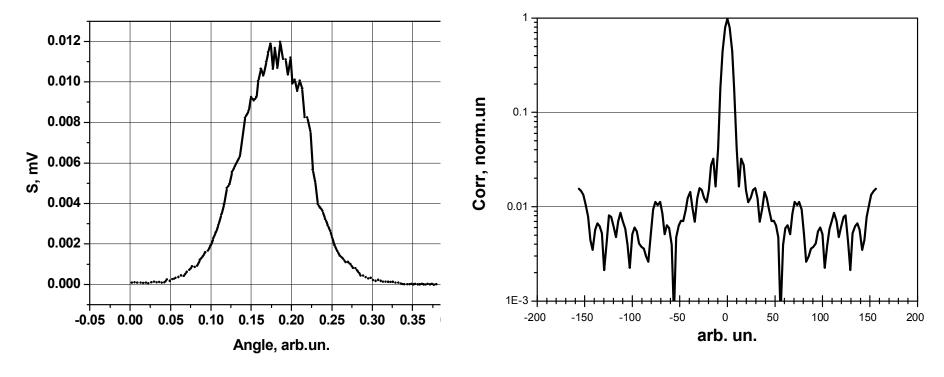
VCSEL 1.78 μ «VERTILAS» (info@vertilas.com)


View of laser module with collimator

InGaAs photodiode "HAMAMATSU"

Spectral response

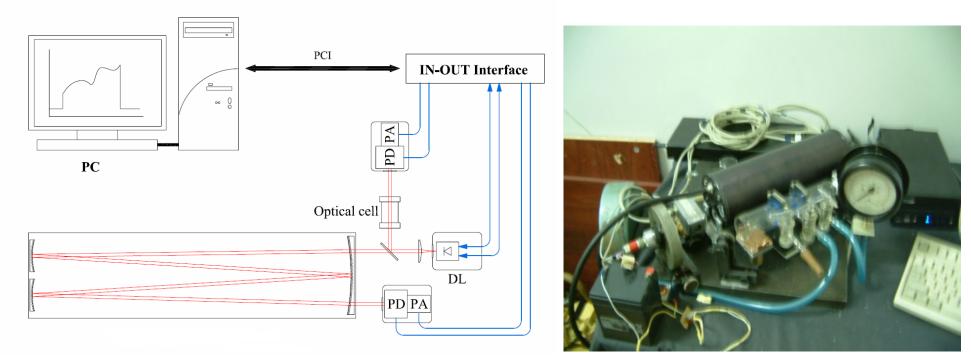
WAVELENGTH (µm)


Electrical /	Optical	Characteristics	at T _o	= 25°C
--------------	---------	-----------------	-------------------	--------

Parameter	Condition	Symbol	Units	Ratings		
	T ₀ =25°C ⁴			Min	Тур	Max
Target Wavelength	To	λο	nm	1400		2050
Current at Target Wavelength ²	λ _ο , Τ _ο	Iλ ₀		Iop _{min}		Iop _{max}
Wavelength Precision at Iop _{min} ³	To	$\Delta \lambda_0$	nm	-1.5	-1.0	
Wavelength Precision at Iop_{max} ³	To	$\Delta \lambda_0$	nm		+1.0	+1.5
Maximum Optical Power						
Between 1500 – 1600nm	To	P _{max}	mW	0.5	0.7	1.3
Between 1601 – 1800nm	To	P _{max}	mW	0.3	0.6	1.1
Between 1801 – 2050nm	Τ _ο	P _{max}	mW	0.2	0.4	0.8
Threshold Current	To	I _{th}	mA	0.4	0.9	2.0
Operating Voltage at P _{max}	To	V _{max}	V			2.0
Absolute Maximum Current 1	Τ _ο	I _{max}	mA			15
Maximum Operating Current to reach λ_0^{-2}	Τ _ο	Iop _{max}			I at 90% of P _{max}	
Minimum Operating Current to reach λ_0 ²	Τ _ο	Iop _{min}			I at 10% of P _{max}	
Current tuning coefficient	Τ _ο	Δλ/ΔΙ	nm/mA	0.6	0.7	0.8
Maximum current tuning range	T ₀ , Iop _{min} <i<iop<sub>max</i<iop<sub>	Δλ	nm	1.5	3	4
Temperature tuning coefficient	λο	Δλ/ΔΤ	nm/°C	0.08	0.11	0.15
Side Mode Suppression Ratio at target wavelength	Including transverse and polarization modes at λ_0	SMSR	dB	25	30	
Spectral Line Width	T ₀ , Iop _{min} <i<iop<sub>max</i<iop<sub>	Δf	MHz		30	
Beam Divergence	Full Width at Half Maximum	FWHM	degree	12	20	30

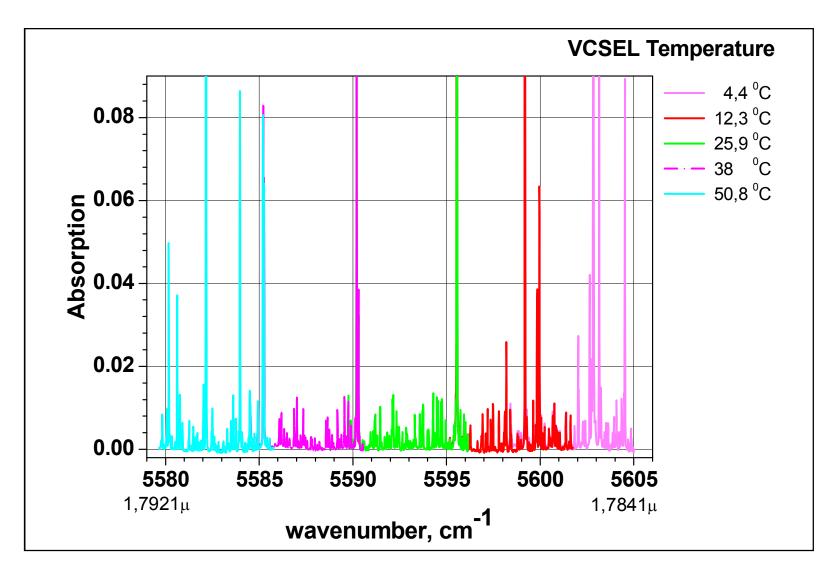
Note 1: the absolute maximum current is precisely given on the laser diode data-sheet after characterization Note 2: by sweeping the current between these limits, it is guaranteed that the target wavelength λ_0 +/- $\Delta\lambda_0$ will be reached at T₀=25°C

Note 3: the wavelength can be adjusted by slightly varying the temperature to reach the target wavelength Note 4: T_0 is controlled by the TEC and measured with the thermistor

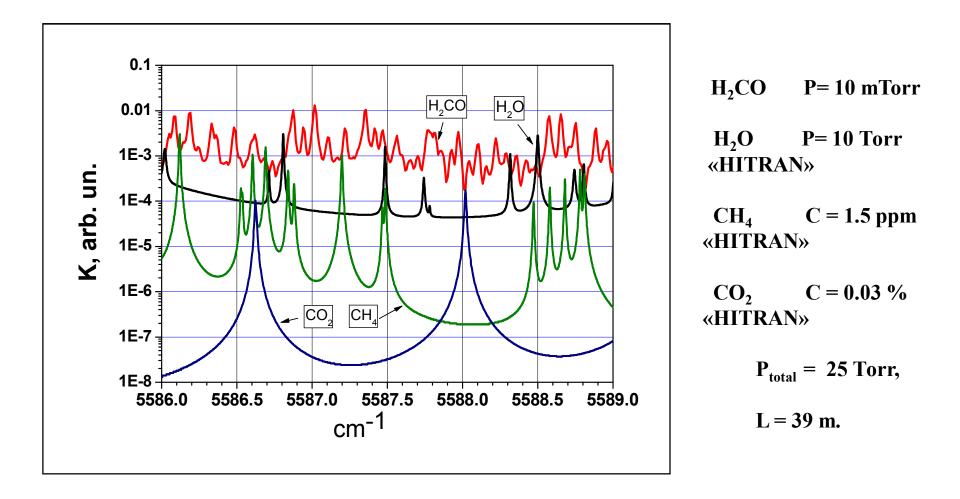

VCSEL far and near field measurements

Fine structure of VCSEL far field

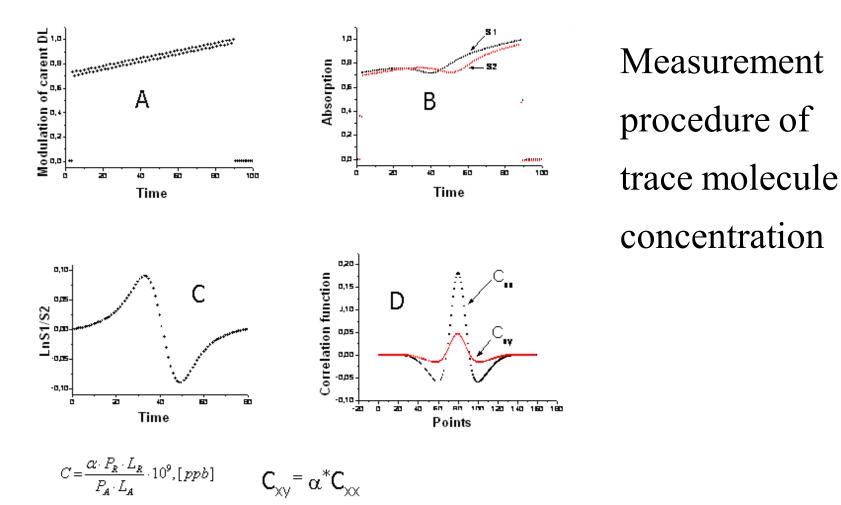
Correlation function of near field


Block-scheme and view of the instrument

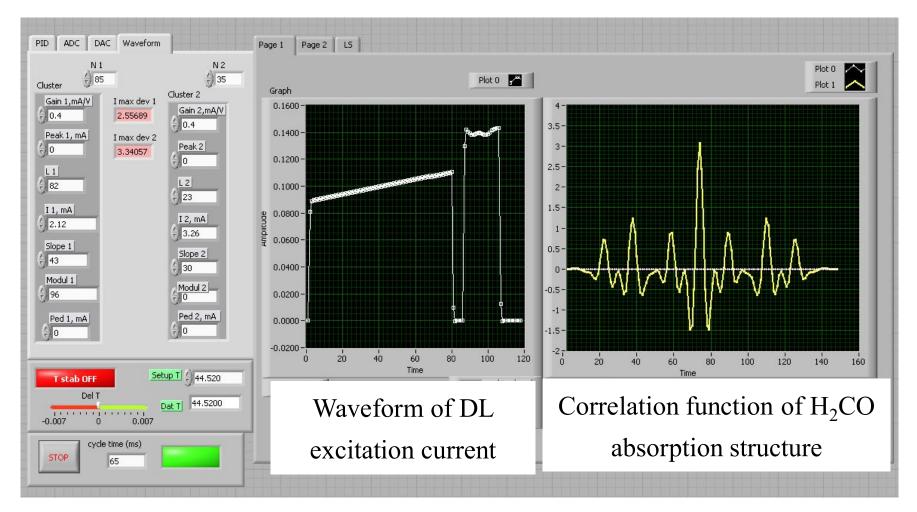
"Chernin" multi-pass cell. L= 39m


Source of H₂CO: 40% water solution

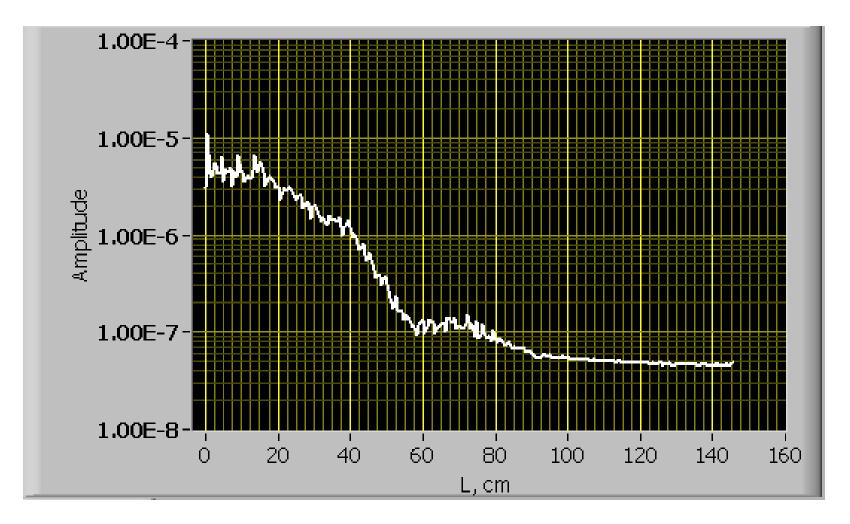
H₂CO spectrum


Spectrum was recorded by VCSEL in spectral range 1.784 -1.792 m

Analytical spectral range

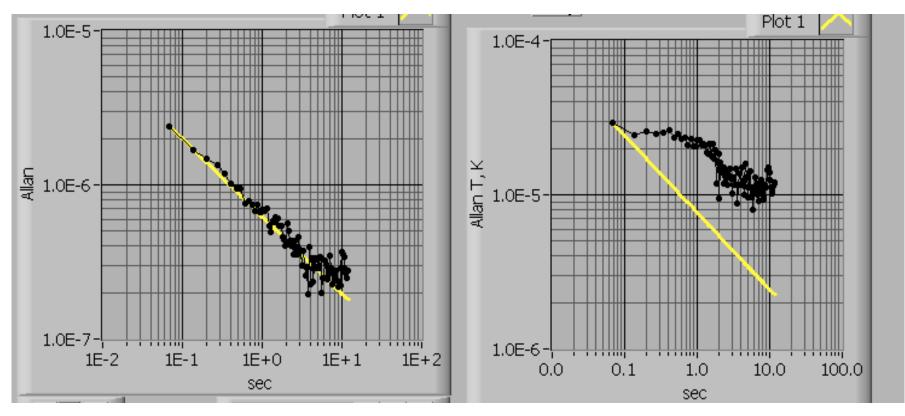

Analytical spectral range for H_2CO registration : 5586.7 – 5587.3 cm⁻¹ There are few interfering lines of gases: CO_2 , CH_4 , H_2O

Operation regime



View of program interface

Two pulse waveform of excitation current (left): First pulse is used to detect H_2CO , second one – to stabilize DL frequency tuning cycles using water lines



Signal Fourier spectrum

Absence of cross-talking and interference fringes

Allan plots

Minimum detectable absorption (left) and temperature stability (right)

Minimum detectable absorption 2.5 10⁻⁷ was achieved, corresponding to 1.3 ppb for 10 sec averaging time

Formaldehyde monitoring in atmosphere

8000

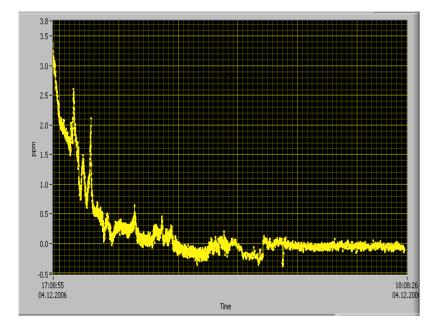
7000

6000

5000

4000

3000


2000

1000

2:33:02

2:54:46

Concentration, ppb

Calibration curve for H₂CO concentration measurements

Long-term H₂CO measurements : Several H₂CO sources were detected when spatial distribution of formaldehyde concentration was measured

3:17:13

Time

3:39:44

5:28:41

Conclusion

- 1. VCSEL diode laser characteristics in 1.78 μ spectral region were investigated.
- 2. Formaldehyde absorption spectrum in 5579 5605 cm⁻¹ was measured.
- 3. Analytical spectral range was chosen to minimize interference with H₂O, CO₂, and CH₄ lines.
- 4. New device was developed for outdoor H_2CO vapors detection.
- 5. Different noise sources were investigated and methods were developed to suppress them.
- 6. Minimum detectable absorption 2.5 10⁻⁷ corresponding to 1.3 ppb was achieved for 10 sec averaging time